Communications to the Editor

Synthesis and Structure of a Dinuclear Cobalt Complex Bridged by Nonsubstituted Borylene-Trimethylphosphine

Mamoru Shimoi,* Sachiko Ikubo, and Yasuro Kawano

Department of Basic Science Graduate School of Arts and Sciences University of Tokyo, Meguro-ku, Tokyo 153, Japan

Department of Chemistry
Graduate School of Science
Tohoku University, Aoba-ku, Sendai 980-77, Japan
Received December 29, 1997
The chemistry of transition metal dinuclear complexes bridged by a methylene has been extensively studied. ${ }^{1}$ Several examples of base-free borylene-bridged dinuclear complexes were reported recently, in which the borylene works as a tricoordinated planar ligand and is stabilized by a π donor amino group, alkoxy group, chlorine, or a bulky tert-butyl group. ${ }^{2}$ Borylene-capped trinuclear complexes $\left[(\mathrm{Cp} * \mathrm{Co})_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{BX}\right)_{2}\right](\mathrm{X}=\mathrm{H}, \mathrm{Cl}){ }^{3}\left[(\mathrm{Cp} * \mathrm{Co})_{3}-\right.$ $\left.(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{BH}\right)\left(\mu_{3}-\mathrm{BX}\right)\right](\mathrm{X}=\mathrm{Cl}, \mathrm{OH}),{ }^{3 \mathrm{~b}}$ and $\left[(\mathrm{CpCo})_{3}\left(\mu_{3}-\mathrm{BPh}\right)-\right.$ $\left.\left(\mu_{3}-\mathrm{PPh}\right)\right]^{4}$ are also known. In sharp contrast to this, no chemistry has been known for dinuclear complexes bridged by nonsubstituted borylene-Lewis base adducts $\mathrm{BH} \cdot \mathrm{L}$, which are the isoelectronic boron counterparts to methylene. We have found that $\mathrm{B}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{PMe}_{3}{ }^{5}(\mathbf{1})$ is fragmented into $\mathrm{BH}_{3} \cdot \mathrm{PMe}_{3}$ and $\mathrm{BH} \cdot \mathrm{PMe}_{3}$ in the reaction with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ and the generated $\mathrm{BH} \cdot \mathrm{PMe}_{3}$ fragment acts as a bridging ligand in the product $\left[\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}(\mu-\mathrm{CO})(\mu\right.$ $\left.\left.\mathrm{BH} \cdot \mathrm{PMe}_{3}\right)\right]$ (2).

Treatment of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with ca. 2-fold excess of $\mathbf{1}$ at $-15{ }^{\circ} \mathrm{C}$ in hexane afforded a yellow-orange solution, from which 2 was isolated as yellow crystals in 66% yield. ${ }^{6}$ The amount of evolved CO was estimated to be 0.8 equiv to the precursor $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with

[^0]use of a Toepler pump. During the reaction, $\mathrm{BH}_{3} \cdot \mathrm{PMe}_{3}$ was generated and removed by sublimation. Thus, the reaction occurs as shown in eq 1. Complex 2 is moderately stable at room temperature under a nitrogen atmosphere in the pure state.

Bis(trimethylphosphine)diborane(4), 1, has been known to coordinate to a metal center through the vicinal $\mathrm{H}(\mathrm{B})$ atoms to produce chelate compounds or through one $\mathrm{M}-\mathrm{H}-\mathrm{B}$ bond to form unidentate complexes: $\left[\mathrm{ZnCl}_{2}\left(\mathrm{~B}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{PMe}_{3}\right)\right],{ }^{7}\left[\mathrm{Ni}(\mathrm{CO})_{2}-\right.$ $\left.\left(\mathrm{B}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{PMe}_{3}\right)\right],{ }^{8}\left[\mathrm{CuI}\left(\mathrm{B}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{PMe}_{3}\right)\right],{ }^{7}\left[\mathrm{Cu}\left(\mathrm{B}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{PMe}_{3}\right)_{2}\right] \mathrm{X}(\mathrm{X}$ $=\mathrm{Cl}, \mathrm{I}),{ }^{9}$ and $\left[\mathrm{M}(\mathrm{CO})_{n}\left(\mathrm{~B}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{PMe}_{3}\right)\right](n=4, \mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$; $n=5, \mathrm{M}=\mathrm{Cr}, \mathrm{W}) .{ }^{10}$ In these complexes, however, $\mathbf{1}$ is included, retaining the original form in the coordination sphere. The present work is the first example of the degradation of $\mathbf{1}$ in the reaction with transition metal complexes.

An ORTEP diagram of 2 is shown in Figure 1. ${ }^{11}$ The two $\mathrm{Co}(\mathrm{CO})_{3}$ moieties are symmetrically bridged by the carbonyl and borylene ligands. The dihedral angle between the two threemembered rings, $\mathrm{B}-\mathrm{Co}(1)-\mathrm{Co}(2)$ and $\mathrm{C}(4)-\mathrm{Co}(1)-\mathrm{Co}(2)$, is 110°. Coordination of the lone electron pair of the phosphorus atom of trimethylphosphine to the boron atom in the borylene ligand induces boron to adopt a pyramidal geometry. The angle between the $\mathrm{B}-\mathrm{P}$ bond and the $\mathrm{B}-\mathrm{Co}(1)-\mathrm{Co}(2)$ three-membered ring is 130.4° while the angle between the $\mathrm{B}-\mathrm{H}(\mathrm{B})$ bond and the three-membered ring is 118.1°. The former is enlarged and the latter is narrowed from the calculated value for the ideal tetrahedron $\left(125.3^{\circ}\right)$, probably due to the steric demand of PMe_{3}. The $\mathrm{Co}(1)-\mathrm{B}$ and $\mathrm{Co}(2)-\mathrm{B}$ bond lengths are 2.112(9) and 2.108(11) \AA, respectively. These are considerably shorter than that found in the boryl complex $\left[\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{1}-\mathrm{dppm}\right)\left(\mu-\mathrm{dppm} \cdot \mathrm{BH}_{2}\right)\right]$ (2.227(6) $\AA) .{ }^{12}$ However, they are longer than those in cobaltaborane clusters with μ_{3}-borylene ligands, $\left[(\mathrm{Cp} * \mathrm{Co})_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{BH})_{2}\right](2.013(8) \text { and } 1.985(6) \AA)^{3 \mathrm{a}}$ and $\left[(\mathrm{CpCo})_{3}\left(\mu_{3}-\mathrm{PPh}\right)\left(\mu_{3}-\mathrm{BPh}\right)\right]$ $(2.018(8)-2.065(8) \AA)^{4}{ }^{4}$ The interatomic distance $\mathrm{Co}(1)-\mathrm{Co}-$ (2) of $2.486(2) \AA$ clearly indicates the existence of a single bond between the cobalt atoms. This distance is slightly longer than that in the μ-carbene dicobalt complex $\left[\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}(\mu-\mathrm{CO})(\mu\right.$ $\left.\left.\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{2}\right)\right](2.451 \AA)^{13}$ but shorter than those in germylene-bridged

[^1]

Figure 1. ORTEP diagram of $\left[\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{BH} \cdot \mathrm{PMe}_{3}\right)\right](2)$ with thermal ellipsoids at the 30% probability level. Selected bond lengths (\AA) and angles (deg): $\mathrm{Co}(1)-\mathrm{Co}(2) 2.486(2), \mathrm{Co}(1)-\mathrm{B} 2.112(9)$, Co-(2)-B 2.108 (11), B-P 1.921 (10), B-H(B) 1.02(7); $\mathrm{Co}(1)-\mathrm{B}-\mathrm{Co}(2)$ $72.2(3), \mathrm{B}-\mathrm{Co}(1)-\mathrm{Co}(2) 53.8(3), \mathrm{B}-\mathrm{Co}(2)-\mathrm{Co}(1) 54.0(3), \mathrm{Co}(1)-$ $\mathrm{C}(4)-\mathrm{Co}(2) 81.8(4), \mathrm{P}-\mathrm{B}-\mathrm{Co}(1) 119.9(5), \mathrm{P}-\mathrm{B}-\mathrm{Co}(2) 123.2(5), \mathrm{H}(\mathrm{B})-$ $\mathrm{B}-\mathrm{Co}(1) 122(4), \mathrm{H}(\mathrm{B})-\mathrm{B}-\mathrm{Co}(2) 117(4), \mathrm{P}-\mathrm{B}-\mathrm{H}(\mathrm{B}) 102(4)$.
complexes $\left[\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}(\mu-\mathrm{CO})(\mu\right.$-GeRR') $](2.491-2.587 \AA$; av $2.55 \AA)^{14}$ and the tricobalt complex capped by a borylene and a phosphinidene $\left[(\mathrm{CpCo})_{3}\left(\mu_{3}-\mathrm{PPh}\right)\left(\mu_{3}-\mathrm{BPh}\right)\right](2.473(2)-2.561(1) \AA$; av $2.53 \AA$). ${ }^{4}$ These differences are attributable to the size of the bridging atoms. The $\mathrm{Co}-\mathrm{Co}$ distance in $\left[\left(\mathrm{Cp}^{*} \mathrm{Co}\right)_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\right.\right.$ $\mathrm{BH})_{2}$] is $2.507(1) \AA ;{ }^{3 a}$ however, a comparison of 2 with this trinuclear complex is rather difficult because of the existence of two borylene bridges as well as bridging hydrido ligands. ${ }^{3 \mathrm{~b}}$

In the ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2}$, the bridging borylene resonates at considerably lower field (17.5 ppm) than the precursor $\mathbf{1}$ (-37.4 $\mathrm{ppm})$ and $\mathrm{BH}_{3} \cdot \mathrm{PMe}_{3}(-37.0 \mathrm{ppm})$. Similarly, the chemical shift of $\mathbf{2}$ is also higher (lower field) compared to that of a boryl

[^2]complex $\mathrm{Cp} * \mathrm{~W}(\mathrm{CO})_{3} \mathrm{BH}_{2} \cdot \mathrm{PMe}_{3}(-27.6 \mathrm{ppm}) .{ }^{15}$ This phenomenon is parallel to the fact that the signal of the carbene ligand in μ-carbene complexes is observed at remarkably low field in ${ }^{13} \mathrm{C}$ NMR spectroscopy. ${ }^{1,16}$ It should be noted that base-free μ-borylene complexes $\left[\left\{\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right) \mathrm{Mn}(\mathrm{CO})_{2}\right\}_{2}(\mu-\mathrm{BX})\right](\mathrm{R}=\mathrm{H}, \mathrm{Me}$; $\left.\mathrm{X}=\mathrm{NMe}_{2}, \mathrm{NHR}^{\prime}, \mathrm{OR}^{\prime}, \mathrm{Cl}, t-\mathrm{Bu}\right)$ recently reported by Braunschweig and co-workers exhibit the ${ }^{11} \mathrm{~B}$ signals at extremely low field (97.6-107.6 ppm for $\mathrm{X}=\mathrm{NMe}_{2}, \mathrm{NHR}^{\prime}, \mathrm{OR}^{\prime} ; 133.5 \mathrm{ppm}$ for $\mathrm{X}=\mathrm{Cl}$, and 170 ppm for $\mathrm{X}=t$-Bu). ${ }^{2}$ The ${ }^{1} \mathrm{H}$ NMR signal of $\mathrm{B}-H$ in $\mathbf{2}$ is also found at low field (4.59 ppm).

Kodama and Kameda previously reported borane-cage expansion reactions using 1. In the reactions, the frameworks of boranes are expanded by the introduction of $\mathrm{BH} \cdot \mathrm{PMe}_{3}$ derived from the fragmentation of $\mathbf{1}$. Thus, diborane(6) reacts with $\mathbf{1}$ to give $\mathrm{B}_{3} \mathrm{H}_{7} \cdot-$ PMe_{3} releasing $\mathrm{BH}_{3} \cdot \mathrm{PMe}_{3}$ via an ionic intermediate $\left[\mathrm{B}_{3} \mathrm{H}_{6} \cdot 2 \mathrm{PMe}_{3}\right]$ $\left[\mathrm{B}_{2} \mathrm{H}_{7}\right]$ (eq 2). ${ }^{17}$

$$
\begin{equation*}
\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{B}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{PMe}_{3} \longrightarrow \mathrm{~B}_{3} \mathrm{H}_{7} \cdot \mathrm{PMe}_{3}+\mathrm{BH}_{3} \cdot \mathrm{PMe}_{3} \tag{2}
\end{equation*}
$$

Some boranes release a Lewis base during the reaction (eq 3). ${ }^{18}$
$\mathrm{B}_{3} \mathrm{H}_{7} \cdot \mathrm{THF}+\mathrm{B}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{PMe}_{3} \longrightarrow \mathrm{~B}_{4} \mathrm{H}_{8} \cdot \mathrm{PMe}_{3}+\mathrm{BH}_{3} \cdot \mathrm{PMe}_{3}+$ THF (3)
In the present case, $\mathbf{1}$ gives the dicobalt framework a $\mathrm{BH} \cdot \mathrm{PMe}_{3}$ moiety to afford 2, which can be regarded as a trinuclear metallaborane. In this aspect, the reaction reported here corresponds to the borane expansion reactions with 1.

Complex 2 undergoes ligand substitution with 2 equiv of PPh_{3} to afford $\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{BH} \cdot \mathrm{PMe}_{3}\right)\right] .{ }^{20}$ Investigation of reactions of $\mathbf{2}$ with other substrates is in progress toward syntheses of new compounds containing a boron moiety.

Acknowledgment. This work was supported by a Grant-in-Aid for Special Project Research (No. 10262099) from the Ministry of Education, Science, Sports, and Culture.

Supporting Information Available: Experimental details and tables of crystallographic data, positional parameters, anisotropic temperature factors, bond distances, and bond angles for 2 (8 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA974357N

(15) Kawano, Y.; Shimoi, M. Advances in Boron Chemistry; Siebert, Ed.; The Royal Chemical Society: London, 1998; pp 393-396.
(16) Hahn, J. E. Prog. Inorg. Chem. 1984, 31, 205-264.
(17) Kameda, M.; Kodama, G. J. Am. Chem. Soc. 1980, 102, 3647-3649.
(18) Kameda, M.; Kodama, G. Inorg. Chem. 1984, 23, 3710-3712.
(19) Sakurai, T.; Kobayashi, M. Rikagaku Kenkyusho Hokoku 1979, 55, 69-77.
(20) NMR data for $\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}_{2}(\mu-\mathrm{CO})\left(\mu\right.\right.$ - $\left.\left.\mathrm{BH} \cdot \mathrm{PMe}_{3}\right)\right]:{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.88\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.5 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}_{3}\right), 4.85\left(\mathrm{q} \mathrm{br},{ }^{1} J_{\mathrm{BH}} \cong 140\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{BH}), 7.05,7.75\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{11} \mathrm{~B}$ NMR ($\left.160.35 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 18.5 (br); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202.35 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.1$ (br, PMe_{3}), $57.3\left(\mathrm{br}, \mathrm{PPh}_{3}\right)$.

[^0]: (1) (a) Holton, J.; Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Rev. 1983, 83, 135-201. (b) Herrmann, W. A. Pure Appl. Chem. 1982, 54, 6582. (c) Herrmann, W. A. Adv. Organomet. Chem. 1982, 20, 159-263.
 (2) (a) Braunschweig, H.; Wagner, T. Angew. Chem., Int. Ed. Engl. 1995, 34, 825-826. (b) Braunschweig, H.; Müller, M. Chem. Ber. 1997, 130, 12951298.
 (3) (a) Deck, K. J.; Fehlner, T. P.; Rheingold, A. L. Inorg. Chem. 1993, 32, 2794-2795. (b) Deck, K. J.; Brenton, P.; Fehlner, T. P. Inorg. Chem. 1997, 36, 554-558.
 (4) Feilong, J.; Fehlner, T. P.; Rheingold, A. L. Angew. Chem., Int. Ed. Engl. 1988, 27, 424-426.
 (5) Hertz, R. K.; Denniston, M. L.; Shore, S. G. Inorg. Chem. 1978, 17, 2673-2674.
 (6) Freshly sublimed $\mathrm{Co}_{2}(\mathrm{CO})_{8}(39 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $1(47 \mathrm{mg}, 0.26$ mmol) were combined in dry hexane $(6.0 \mathrm{~mL})$ under a high vacuum at 77 K and the resulting mixture was gradually warmed to $-15^{\circ} \mathrm{C}$. During stirring at $-15^{\circ} \mathrm{C}$, evolution of a gas which is noncondensable at 77 K was observed. The amount of the gas collected over 8 h was determined to be 0.09 mmol by using a Toepler pump. The solvent was then removed and the residue was recrystallized from pentane (8.5 mL) to give yellow crystals with coproduced $\mathrm{BH}_{3} \cdot \mathrm{PMe}_{3}$. Removal of $\mathrm{BH}_{3} \cdot \mathrm{PMe}_{3}$ by sublimation from the solid afforded 2 ($29 \mathrm{mg}, 0.07 \mathrm{mmol}, 66 \%$) as a pure product. Data for 2: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.61\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.5 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}_{3}\right), 4.59\left(\mathrm{q} \mathrm{br},{ }^{1} J_{\mathrm{BH}} \cong 125 \mathrm{~Hz}, 1 \mathrm{H}\right.$, BH); ${ }^{11} \mathrm{~B}$ NMR (160.35 MHz , toluene- d_{8}) $\delta 17.5$ (br); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.35 MHz , toluene- $\left.d_{8}\right) \delta-6.2\left(\mathrm{q} \mathrm{br},{ }^{1} J_{\mathrm{PB}} \cong 90 \mathrm{~Hz}\right) ;$ IR $(\mathrm{KBr}) v 2395(\mathrm{~m})(\mathrm{BH})$, 2080 (s), 2050 (sh), 2040 (vs), 2002 (sh), 1980 (vs), 1970 (sh), 1940 (sh) $\left(\mathrm{CO}_{\text {term }}\right), 1795 \mathrm{~cm}^{-1}(\mathrm{~m})\left(\mathrm{CO}_{\text {brid }}\right) ; \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 402\left(\mathrm{M}^{+}, 15\right), 374$ $\left([\mathrm{M}-\mathrm{CO}]^{+}, 346\left([\mathrm{M}-2 \mathrm{CO}]^{+}, 38\right), 318\left([\mathrm{M}-3 \mathrm{CO}]^{+}, 290\left([\mathrm{M}-4 \mathrm{CO}]^{+}\right.\right.\right.$, 25), $262\left([\mathrm{M}-5 \mathrm{CO}]^{+}, 83\right), 234\left([\mathrm{M}-6 \mathrm{CO}]^{+}, 100\right), 206\left([\mathrm{M}-7 \mathrm{CO}]^{+}\right.$, 48). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BCo}_{2} \mathrm{O}_{7} \mathrm{P}: \mathrm{C}, 29.89 ; \mathrm{H}, 2.51$. Found: C, 29.78; H, 2.52.

[^1]: (7) Snow, S. A.; Shimoi, M.; Ostler, C. D.; Thompson, B. K.; Kodama, G.; Parry, R. W. Inorg. Chem. 1984, 23, 511-512.
 (8) Snow, S. A.; Kodama, G. Inorg. Chem. 1985, 24, 795-796.
 (9) Shimoi, M.; Katoh, K.; Tobita, H.; Ogino, H. Inorg. Chem. 1990, 29, 814-817.
 (10) (a) Katoh, K.; Shimoi, M.; Ogino, H. Inorg. Chem. 1992, 31, 670675. (b) Shimoi, M.; Katoh, K.; Ogino, H. J. Chem. Soc., Chem. Commun. 1990, 811-812.
 (11) Crystallographic data for 2: yellow crystals, crystal size 0.5×0.15 $\times 0.1 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / n$ (variant of No. 14); $a=11.365(1)$ $\AA, b=17.028(2) \AA, c=8.543(2) \AA, \beta=93.31(1)^{\circ} ; V=1650.7(4) \AA^{3} ; Z=$ 4. Data collection: $\mathrm{Mo} \mathrm{K} \alpha, 1.25 \mathrm{~kW}, 293 \mathrm{~K}, 2 \theta=3-55^{\circ}$, 3915 independent reflections. The structure was solved by the heavy atom method (UNICSIII). ${ }^{19} 195$ parameters. Positions of non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms bound to boron were determined by difference Fourier synthesis and refined isotropically. The other hydrogens were not found. $R=0.061$ for 1792 reflections having $\left|F_{\mathrm{o}}\right|>3 \sigma$ $\left(F_{\mathrm{o}}\right)$.
 (12) Elliot, D. J.; Levy, C. J.; Puddephatt, R. J.; Holah, D. G.; Hughes, A. N.; Magnuson, V. R.; Moser, I. M. Inorg. Chem. 1990, 29, 5014-5015.
 (13) Mills, O. S.; Robinson, G. Inorg. Chim. Acta 1967, 1, 61-64.

[^2]: (14) (a) Ball, R.; Bennett, M. J.; Brooks, E. H.; Graham, W. A.; Hoyano, J.; Illingworth, S. M. J. Chem. Soc., Chem. Commun. 1970, 592-593. (b) Gerlach, R. F.; Mackay, K. M.; Nicholson, B. K. J. Chem. Soc., Dalton Trans. 1981, 80-83. (c) Anema, S. G.; Mackay, K. M.; McLeod, L. C.; Nicholson, B. K.; Whittaker, J. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 759-760. (d) Anema, S. G.; Lee, S. K.; Mackay, K. M.; Nicholson, B. K.; Service, M. J. Chem. Soc., Dalton Trans. 1991, 1201-1208.

